Unsere alten Seiten bleiben vorerst hier online, werden aber nicht mehr gepflegt! Das neue AnthroWiki finden Sie wie gewohnt unter anthrowiki.at. |
Eine freie Initiative von Menschen bei anthro.wiki, anthro.world und biodyn.wiki mit online Lesekreisen, Übungsgruppen, Vorträgen ... |
![]() |
Modus ponendo tollens
Der Modus ponendo tollens ist eine Schlussfigur der klassischen Aussagenlogik und eine Schlussregel vieler logischer Kalküle, die es erlaubt, aus zwei Sätzen mit den Formen Nicht (A und B). und A., den Prämissen, auf einen Satz der Form Nicht B. als Konklusion zu schließen:
| |
| |
modus ponendo tollens | |
Es wird also - inhaltlich gesprochen - aus dem Wissen, dass zwei bestimmte Sachverhalte nicht zugleich bestehen können, dass aber einer der beiden Sachverhalte sehr wohl besteht, darauf geschlossen, dass der andere der beiden nicht vorliegt.
Der lateinische Name Modus ponendo tollens, frei: "Schlussweise (modus), die durch das Setzen (ponendo) [einer Aussage] eine [andere] Aussage zurückweist (tollens), erklärt sich daraus, dass bei gegebener erster Prämisse, ¬(A ∧ B), durch das Setzen einer zweiten, positiven (unverneinten) Prämisse, A, eine Aussage, B, "zurückgewiesen" (verneint) wird.
Beispiel
Aus den Voraussetzungen „Es kann nicht sein, dass es regnet (A) und die Straße trocken ist (B)“ und „Es regnet (A)“ folgt logisch: „Die Straße ist nicht trocken (nicht B)“.
Beweis
Die logische Äquivalenz der Aussagen ¬(A ∧ B) und A → ¬B folgt aus den Definitionen der Konjunktion, Subjunktion und der Negation.
|
|
Siehe auch
- Modus polendo ponens - Artikel in der deutschen Wikipedia - oft unexakt zu Modus ponens abgekürzt
- Modus tollendo tollens - Artikel in der deutschen Wikipedia - oft unexakt zu Modus tollens abgekürzt
- Modus tollendo ponens - Artikel in der deutschen Wikipedia
- Modus ponendo tollens - Artikel in der deutschen Wikipedia
- Kettenschluss - Artikel in der deutschen Wikipedia
- Modus Barbara - Artikel in der deutschen Wikipedia
Dieser Artikel basiert (teilweise) auf dem Artikel Modus ponendo tollens aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar. |