AnthroWiki ist auf einen neuen Server umgezogen!
Unsere alten Seiten bleiben vorerst hier online, werden aber nicht mehr gepflegt! Das neue AnthroWiki finden Sie wie gewohnt unter anthrowiki.at.



gemeinsam neue Wege der Erkenntnis gehen
Eine freie Initiative von Menschen bei anthro.wiki, anthro.world und biodyn.wiki
mit online Lesekreisen, Übungsgruppen, Vorträgen ...
PayPal btn small.gif Wie Sie die Entwicklung von AnthroWiki durch Ihre Spende unterstützen können, erfahren Sie hier.

Modus ponendo tollens

Aus AnthroWiki
Wechseln zu: Navigation, Suche

Der Modus ponendo tollens ist eine Schlussfigur der klassischen Aussagenlogik und eine Schlussregel vieler logischer Kalküle, die es erlaubt, aus zwei Sätzen mit den Formen Nicht (A und B). und A., den Prämissen, auf einen Satz der Form Nicht B. als Konklusion zu schließen:


LaTeX:  \neg (A \land B)
LaTeX:  A
modus ponendo tollens LaTeX:  \neg B


Es wird also - inhaltlich gesprochen - aus dem Wissen, dass zwei bestimmte Sachverhalte nicht zugleich bestehen können, dass aber einer der beiden Sachverhalte sehr wohl besteht, darauf geschlossen, dass der andere der beiden nicht vorliegt.

Der lateinische Name Modus ponendo tollens, frei: "Schlussweise (modus), die durch das Setzen (ponendo) [einer Aussage] eine [andere] Aussage zurückweist (tollens), erklärt sich daraus, dass bei gegebener erster Prämisse, ¬(A ∧ B), durch das Setzen einer zweiten, positiven (unverneinten) Prämisse, A, eine Aussage, B, "zurückgewiesen" (verneint) wird.

Beispiel

Aus den Voraussetzungen „Es kann nicht sein, dass es regnet (A) und die Straße trocken ist (B)“ und „Es regnet (A)“ folgt logisch: „Die Straße ist nicht trocken (nicht B)“.

Beweis

Die logische Äquivalenz der Aussagen ¬(A ∧ B) und A → ¬B folgt aus den Definitionen der Konjunktion, Subjunktion und der Negation.

A B A ∧ B ¬(A ∧ B)
f f f w
f w f w
w f f w
w w w f
A B ¬B A → ¬B
f f w w
f w f w
w f w w
w w f f

Siehe auch


Dieser Artikel basiert (teilweise) auf dem Artikel Modus ponendo tollens aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.