AnthroWiki ist auf einen neuen Server umgezogen!
Unsere alten Seiten bleiben vorerst hier online, werden aber nicht mehr gepflegt! Das neue AnthroWiki finden Sie wie gewohnt unter anthrowiki.at.



gemeinsam neue Wege der Erkenntnis gehen
Eine freie Initiative von Menschen bei anthro.wiki, anthro.world und biodyn.wiki
mit online Lesekreisen, Übungsgruppen, Vorträgen ...
PayPal btn small.gif Wie Sie die Entwicklung von AnthroWiki durch Ihre Spende unterstützen können, erfahren Sie hier.

Exponentialfunktion

Aus AnthroWiki
(Weitergeleitet von Exponentielles Wachstum)
Wechseln zu: Navigation, Suche
Funktionsgraph der Exponentialfunktion LaTeX: y=e^x (rot) mit der Tangente durch den Punkt 0/1 (hellblau gestrichelte Linie)

Eine Exponentialfunktion ist eine mathematische Funktion der Form LaTeX: x \mapsto a^x mit einer reellen Zahl LaTeX: a > 0\text{ und } a \neq 1 als Basis.

Die Exponentialfunktion schlechthin ist die natürliche Exponentialfunktion LaTeX: x \mapsto e^x bzw. LaTeX: x \mapsto \exp(x) mit der eulerschen Zahl LaTeX: e = 2{,}718\,281\,828\,459\dotso als Basis, weshalb sie auch als e-Funktion bezeichnet wird.

Ein Prozess, dessen Verlauf einer Exponentialfunktion folgt, wird als exponentieller Prozess bezeichnet. Bei einer immer schnelleren Zunahme einer Größe handelt es sich um exponentielles Wachstum, bei einer immer langsamer werdenden Annäherung an einen festen Wert um exponentielle Annäherung, wie es etwa beim radioaktiven Zerfall geschieht. Die Zunahme der Weltbevölkerung ist in den letzten 200 Jahren sogar in ein noch stärkeres hyperexponentielles Wachstum übergegangen, steigt also mehr als exponentiell an.

Siehe auch