AnthroWiki ist auf einen neuen Server umgezogen!
Unsere alten Seiten bleiben vorerst hier online, werden aber nicht mehr gepflegt! Das neue AnthroWiki finden Sie wie gewohnt unter anthrowiki.at.



gemeinsam neue Wege der Erkenntnis gehen
Eine freie Initiative von Menschen bei anthro.wiki, anthro.world und biodyn.wiki
mit online Lesekreisen, Übungsgruppen, Vorträgen ...
PayPal btn small.gif Wie Sie die Entwicklung von AnthroWiki durch Ihre Spende unterstützen können, erfahren Sie hier.

Bifurkation (Mathematik)

Aus AnthroWiki
Wechseln zu: Navigation, Suche

Eine Bifurkation oder Verzweigung ist eine qualitative Zustandsänderung in nichtlinearen Systemen unter Einfluss eines Parameters LaTeX: \mu. Der Begriff der Bifurkation wurde von Henri Poincaré eingeführt.

Nichtlineare Systeme, deren Verhalten von einem Parameter abhängt, können bei einer Änderung des Parameters ihr Verhalten plötzlich ändern. Zum Beispiel kann ein System, das zuvor einem Grenzwert zustrebte, nun zwischen zwei Werten hin und her springen, also zwei Häufungspunkte aufweisen. Dies nennt man eine Bifurkation. Bestimmte Systeme können unter finiter Änderung des Parameters LaTeX: \mu unendlich viele Bifurkationen erfahren und damit eine unendliche Menge an Häufungspunkten aufweisen. Das Verhalten solcher Systeme wandelt sich unter Änderung des Parameters LaTeX: \mu somit zu deterministisch chaotischem Verhalten. Ein Beispiel hierfür ist die logistische Abbildung.

Definition

Ein dynamisches System kann durch eine Funktion LaTeX: F(x) beschrieben werden, die die zeitliche Entwicklung des Systemzustands LaTeX: x bestimmt. Diese Funktion sei nun von einem Parameter LaTeX: \mu abhängig, was man durch die Schreibweise LaTeX: F(x,\mu) ausdrückt. Wenn nun das System für Parameterwerte unterhalb eines bestimmten kritischen Werts LaTeX: \mu_c ein qualitativ anderes Verhalten aufweist als für Werte oberhalb von LaTeX: \mu_c, dann spricht man davon, dass das System bei LaTeX: \mu_c eine Bifurkation im Parameter LaTeX: \mu erfährt. Der Parameterwert LaTeX: \mu_c wird dann als Bifurkationspunkt bezeichnet.

Was eine „qualitative Änderung“ ist, kann man formal mit dem Begriff der topologischen Äquivalenz bzw. der topologischen Konjugation beschreiben: Solange für zwei Parameterwerte LaTeX: \mu_1 und LaTeX: \mu_2 die Systeme LaTeX: F(x,\mu_1) und LaTeX: F(x,\mu_2) zueinander topologisch äquivalent sind, liegt keine qualitative Änderung im obigen Sinne vor.

Die Änderung am Bifurkationspunkt besteht in den meisten Fällen entweder in einer Änderung der Anzahl von Attraktoren wie Fixpunkte oder periodischen Orbits, oder eine Änderung der Stabilität dieser Objekte.

Bifurkationsdiagramm

Abbildung 1: Bifurkationsdiagramm der logistischen Gleichung
Bifurkationen lassen sich in Bifurkationsdiagrammen graphisch darstellen. Bei einem eindimensionalen System werden dabei die Fixpunkte des Systems gegen den Parameter LaTeX: \mu aufgetragen. Für jeden Parameterwert wird so die Anzahl und die Lage dieser Punkte angezeigt. Zusätzlich kann man stabile und instabile Fixpunkte z. B. durch verschiedene Färbung unterscheiden. Bei einem System mit mehreren Variablen kann man ähnliche Diagramme zeichnen, indem man nur einen Unterraum des Phasenraums betrachtet, etwa durch einen Poincaré-Schnitt.

Das bekannteste Bifurkationsdiagramm ist das in Abbildung 1. gezeigte Feigenbaumdiagramm, das sich aus der logistischen Gleichung ableitet und eine Periodenverdoppelungsbifurkation abbildet. Man erkennt, dass bei kleinen Parameterwerten nur ein stabiler Fixpunkt existiert, der am ersten Bifurkationspunkt in einen Orbit aus zwei alternierenden Häufungspunkten übergeht. Dieser Orbit verdoppelt dann an weiteren Bifurkationspunkten jedes Mal wieder seine Periode (kommt also erst nach 2, 4, 8 etc. Durchläufen wieder an den gleichen Punkt), bis er bei einem Parameterwert von etwa 3,57 in einen chaotischen Zustand übergeht, wo überhaupt keine Periode mehr erkennbar ist. All diese Übergänge lassen sich mithilfe des Bifurkationsdiagrammes gut veranschaulichen.

Beispiel

Ein typisches Beispiel einer Bifurkation ist das Knicken eines Stabes unter Druckbelastung.

Man stelle sich einen im Boden eingespannten, senkrecht stehenden, masselosen Stab mit einem Gewicht LaTeX: \mu an der Spitze vor. Die Winkelabweichung des Stabes aus der Senkrechten entspricht dabei der Variablen x.

Solange das Gewicht klein genug bleibt, ist LaTeX: x = 0 eine stabile Gleichgewichtslage des Systems, d. h. für kleine Abweichungen richtet sich der Stab selbständig wieder in die Senkrechte (LaTeX: x = 0) aus. Wird das Gewicht LaTeX: \mu kontinuierlich gesteigert, so wird bei einem bestimmten Gewicht (der Knicklast oder auch Verzweigungslast) die senkrechte Gleichgewichtslage instabil. Gleichzeitig entstehen (für ein ebenes System) zwei neue (stabile) Gleichgewichtslagen (indem der Stab nach links oder rechts abknickt.) Der Übergang des Systems von einer (stabilen) zu drei (einer instabilen, zwei stabilen) Gleichgewichtslagen ist die Bifurkation, die in diesem Fall eine Pitchfork-Bifurkation ist.

Typen

Literatur

  • Hassan K. Khalil: Nonlinear Systems. 3. Auflage. Prentice Hall, 2002, ISBN 0-13-067389-7.
  • R. I. Leine, H. Nijmeijer: Dynamics and Bifurcations in Non-Smooth Mechanical Systems. In: Lecture Notes in Applied and Computational Mechanics. Vol. 18, Springer-Verlag, Berlin/ Heidelberg/ New York 2004, ISBN 3-540-21987-0.
  • Steven Strogatz: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Perseus Books Group, ISBN 0-7382-0453-6.

Weblinks

 Wiktionary: Bifurkation – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Siehe auch

Dieser Artikel basiert (teilweise) auf dem Artikel Bifurkation (Mathematik) aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons Attribution/Share Alike. In Wikipedia ist eine Liste der Autoren verfügbar.